Polish version    English version  
  About Olympic -> Problems -> X OI 2002/2003


 News
 About Olympic
About contest
Problems
I OI 1993/1994
II OI 1994/1995
III OI 1995/1996
IV OI 1996/1997
V OI 1997/1998
VI OI 1998/1999
VII OI 1999/2000
VIII OI 2000/2001
IX OI 2001/2002
X OI 2002/2003
XI OI 2003/2004
XII OI 2004/2005
XIII OI 2005/2006
XIV OI 2006/2007
XV OI 2007/2008
Problems archive
 History of OI
 OI books
 National team
 Olympic camps
 Photo gallery
 Links
 SIO
 MAIN
webmaster
X Olympiad in Informatics 2002/2003

Problem: Chocolate
Author: Marcin Kubica

We are given a bar of chocolate composed of m*n square pieces. One should break the chocolate into single squares. Parts of the chocolate may be broken along the vertical and horizontal lines as indicated by the broken lines in the picture. A single break of a part of the chocolate along a chosen vertical or horizontal line divides that part into two smaller ones. Each break of a part of the chocolate is charged a cost expressed by a positive integer. This cost does not depend on the size of the part that is being broken but only depends on the line the break goes along. Let us denote the costs of breaking along consecutive vertical lines with x1, x2, ..., xm-1 and along horizontal lines with y1, y2, ..., yn-1. The cost of breaking the whole bar into single squares is the sum of the successive breaks. One should compute the minimal cost of breaking the whole chocolate into single single squares.

Example
of chocolate

For example, if we break the chocolate presented in the picture first along the horizontal lines, and next each obtained part along vertical lines then the cost of that breaking will be y1+y2+y3+4*(x1+x2+x3+x4+x5).

Task

Write a program which:
  • reads the numbers x1, x2, ..., xm-1 and y1, y2, ..., yn-1,
  • computes the minimal cost of breaking the whole chocolate into single squares,
  • writes the result.

Input

In the first line of the standard input there are two positive integers m and n separated by a single space, 2 <= m,n <= 1000. In the successive m-1 lines there are numbers x1, x2, ..., xm-1, one per line, 1 <= xi <= 1000. In the successive n-1 lines there are numbers y1, y2, ..., yn-1, one per line, 1 <= yi <= 1000.

Output

Your program should write to the standard output. In the first and only line your program should write one integer - the minimal cost of breaking the whole chocolate into single squares.

Example

For the following input data:
6 4
2
1
3
1
4
4
1
2
the correct answer is in the following output:
42



Print friendly version