Polish version    English version  
  About Olympic -> Problems -> XII OI 2004/2005


 News
 About Olympic
About contest
Problems
I OI 1993/1994
II OI 1994/1995
III OI 1995/1996
IV OI 1996/1997
V OI 1997/1998
VI OI 1998/1999
VII OI 1999/2000
VIII OI 2000/2001
IX OI 2001/2002
X OI 2002/2003
XI OI 2003/2004
XII OI 2004/2005
XIII OI 2005/2006
XIV OI 2006/2007
XV OI 2007/2008
Problems archive
 History of OI
 OI books
 National team
 Olympic camps
 Photo gallery
 Links
 SIO
 MAIN

Task: sko


Knights

I stage competition  
Source file: sko.xxx (xxx=pas,c,cpp)
Memory limit: 32 MB

A knight moves on an infinite chessboard. Each move it can perform is described by a pair of integers - a pair (a,b) indicates that a move from the square (with coordinates) (x,y) to the square (x+a,y+b) or (x-a,y-b) is possible. Each knight has a prescribed set of such pairs, describing the moves this knight can make. For each knight we assume that not all squares this knight can move to from square (0,0) are collinear.

We say two knights are equivalent, if they can reach exactly the same squares starting from the square (0,0) (by making many moves, perhaps). (Let us point out that equivalent knights may reach these squares in different number of moves). It can be shown that for every knight there exists an equivalent one whose moves are described by only two pairs of numbers.

Task

Write a programme that:

  • reads from the standard input the pairs denoting the knight's moves,
  • determines two pairs of integers denoting the moves of an equivalent knight, 
  • writes these two pairs of integers to the standard output.

Input

In the first line of the standard input one integer n is written, dentoting the number of pairs describing the knight's moves, 3 <= n <= 100. In the following n lines pairs of integers representing the knight's moves are written, one pair per line. In each of these lines two integers a_i and b_i separated by a single space are written, -100 <= a_i, b_i <= 100. We assume that (a_i,b_i) <> (0,0).

Output

In the first line of the standard output two integers a and b separated by a single space should be written, $-10.000 <= a, b <= 10.000. In the second line two integers c and d separated by a single space should be written, -10.000 <= c, d <= 10.000. The above integers should satisfy the condition that a knight whose moves are described by pairs (a,b) and (c,d) is equivalent to the knight described in the input data.

Example

For the following input data:

3
24 28
15 50
12 21

the correct answer is:

468 1561
2805 9356
or:
3 0
0 1



Print friendly version